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Abstract: A method is presented for discriminating between malignant and benign pigmented
skin lesions based on multispectral and multi-angle images. It is discussed how to retrieve
maps of physiology properties and morphometric parameters from recorded images using a bio-
optical model, radiative transfer calculations, and nonlinear inversion, and how to employ auto-
mated zooming to extract lesion and surrounding masks. Training and validation of a classifica-
tion scheme for separation between benign and malignant tissue yielded sensitivity/specificity
ranging from 97%/97% for application to a small dataset comprised of lesions not used for train-
ing and validation to 99%/93% for application to a larger dataset.
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1. Introduction

In recent years, considerable effort has been expended on devoloping optical methods for charac-
terizing tissue and monitoring changes. In 2014, the Canadian Agency for Drugs and Technolo-
gies in Health published a report [1] on optical scanners for melanoma detection, discussing
three different devices (Aura, MelaFind, and SIMSYS-MoleMate) approved for marketing in
Canada and/or USA. As the report confirms, the 5-year survival rate is 93 to 97% for melanoma
detected at an early stage, but drops to between 10 and 20% for advanced stage detection, imply-
ing that there is a need for accurate diagnostic devices to enable early detection while avoiding
unnecessary biopsies [2–5].

Aura (Verisante Technology, Inc., Vancouver, British Columbia, Canada) utilizes near-
infrared laser light and Raman spectroscopy to distinguish malignant from benign skin le-
sions [6, 7]. A clinical study [5], involving 453 patients with 518 suspicious pigmented lesions,
of the diagnostic performance for discrimination between melanoma and benign pigmented le-
sions showed sensitivities ranging from 90 to 99% for specificities ranging from 68 to 15%.

MelaFind (MELA Sciences, Inc., Irvington, New York, USA) illuminates the skin at 10 wave-
lengths, measures light scattered back from the skin, and uses image analysis algorithms com-
bined with a skin disorder database to provide treatment suggestion [8, 9]. For discrimination
between melanoma and benign pigmented lesions in a population of suspicious lesions a clin-
ical study involving 1,383 patients with 1,831 pigmented skin lesions showed 98% sensitivity
and 9% specificity [8].

SIMSYS-MoleMate Skin Imaging System (MedX Health, Inc., Hamilton, Ontario, Canada)
is based on using a handheld, multispectral scanner and computer software to provide dermo-
scopic images, dermal and epidermal pathological characteristics, and the ability to catalogue,
monitor, and compare lesions over time [10]. In a randomized controlled trial involving 1,297
patients with 1,580 suspicious pigmented lesions it was found that adding MoleMate to best
practice resulted in lower agreement with expert assessment that the lesion was benign and led
to a higher proportion of referrals [11].

An algorithm based on reflectance confocal microscopy (RCM) has been proposed [12] for
diagnosis of melanoma, and its sensitivity and specificity has been compared to that of der-
moscopy [13], showing RCM to have specificity of 68% compared to 32% for dermoscopy,
whereas the sensitivity was 91% for RCM and 88% for dermoscopy [14].

In two previous studies [15, 16], the application of optical transfer diagnosis (OTD) for non-
invasive detection of skin cancer was discussed, the objective being to evaluate the potential
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of this technology for differentiation of benign from malignant pigmented melanocytic lesions.
After scanning, lesions were biopsied for histopathologic examination, each by two separate
dermatopathologists. The second study [16] included 94 patients with a total of 118 pigmented
lesions suggestive of melanoma, out of which 11 were identified as melanoma or atypical
melanocytic hyperplasia consistent with melanoma. For identification of melanomas, OTD had
a sensitivity of 100% and a specificity of 90%. The results in [15, 16] were based on using a
linear binary classifier to differentiate between malignant and benign lesions in a population of
suspicious lesions. As the set of measurements on suspicious lesions was enlarged with similar
types of lesions beyond the 118 lesions studied in [16], a linear binary classifier was found not
to perform satisfactorily, probably due to overtraining on the limited initial data set, providing
overoptimistic results that could not be sustained as the data set was enlarged. The objective of
the new classification scheme discussed in this paper, which involves clustering and construc-
tion of nonlinear classifiers, is to discriminate between two classes of tissue, e.g. malignant vs.
benign. For application to pigmented unselected (“all-comer”) skin lesions, we demonstrate that
such discrimination can be performed with high sensitivity and specificity.

In addition to clustering, the new classification scheme includes the following novel features:
(i) estimation of noise using multiple measurements (typically three) of each lesion to improve
data quality and increase robustness (see Appendix A); (ii) use of several new physiology-based
diagnostic parameters to improve separation of lesion types; (iii) use of generalized diagnostic
parameters to reduce their number; and (iv) a new cost function to increase robustness.

The objective of this paper is to describe new features of the OTD classification scheme
compared to those presented in [15, 16], and present results that demonstrate its potential.

2. Optical transfer diagnosis

An optical transfer diagnosis (OTD) device (Balter Medical AS, Bergen, Norway) is a spectral
radiometer that records a set of 30 images, constituting a lesion measurement, in less than 10
seconds. Images are recorded at 10 different wavelengths (365–1,000 nm) from multiple angles
of illumination and detection.

The OTD system consists of a handheld unit, a docking station, and a laptop PC, as shown in
Fig. 1. The only control item on the handheld unit is a release button to initiate image recording,
all other controls are performed via a user interface on the laptop PC. When not in use, the
handheld unit is placed in the docking station, where the observation window is placed against
a calibration target. Figure 2 shows the inner parts of the handheld OTD unit. The sensor head

Fig. 1. Illustration of the OTD system with its handheld unit placed in a docking station,
and with cables connecting it to a power supply and a laptop PC.

contains an illuminating system and an imaging system, as shown in the three-dimensional
sketch in Fig. 3. The illuminating system consists of 12 fixed light-emitting diode (LED) lamps.
Each LED is placed at a different angle relative to the skin to enhance the ability to retrieve
depth information. The polar angles of the LEDs vary between 30 and 45◦, and the relative
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Fig. 2. Illustration of the inner parts of the handheld OTD unit.

azimuth angles between 34 and 145◦. The polar angles for the detectors vary between 0 and
45◦, and the relative azimuth angles between 0 and 180◦.

The imaging system consists of one correcting lens placed inside the handle plus another
correcting lens and five mirrors placed inside the sensor head (Figs. 2, 3, and 4) and a sapphire
glass observation window that contacts the area of the skin lesion. The camera chip consists of
three IEEE (Institute of Electrical and Electronics Engineers) 1394 FireWire cameras.

Fig. 3. 3D sketch of the inner parts of the handheld OTD unit.

Fig. 4. Ray trace of the OTD imaging system. IS: Image sensor: L1: Camera lens; L2:
Correcting lens 1; L3: Correcting lens 2; M1: Plane mirror for central view image; M2,
M3: Plane mirrors for upper 30◦ oblique view image; M4, M5: Plane mirrors for lower
45◦ oblique view image; W: Sapphire glass window.

As indicated in Fig. 4, the five mirrors are used to image the same area of the skin viewed
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from three different angles on three different sections of the camera chip. Figure 4 shows the
central rays for images from three different view angles. The plane mirror M1 provides a nadir
(vertically downward) view image, the plane mirrors M2 and M3 give an upper 30◦ oblique
view image, and the plane mirrors M4 and M5 provide a lower 45◦ oblique view image. To
compensate for different object distances for the three angular views, the camera chip is slightly
tilted relative to the optical axis. Also, as explained in section 3, image compression is employed,
which reduces the resolution requirement significantly.

An alcohol-based gel interface is used where the sapphire observation window contacts the
skin to provide refractive-index matching and avoid rough-surface scattering, and to obtain
illumination and imaging of a selected area of the skin through the 2.2-cm-diameter circular
sapphire observation window.

On the basis of established absorption and transmission spectra for known skin chromophores
and mathematical modeling of skin reflectance [17, 18], the set of recorded images is used to
retrieve maps of physiology properties and morphometric parameters of the lesion, which are
assumed to be different for benign and malignant tissue. The retrieval is based on (i) a bio-
optical model that relates physiological properties of skin tissue to its inherent optical properties
[18], (ii) a radiative transfer model that for a given set of inherent optical properties computes
the light backscattered from the skin for a given wavelength and direction of illumination, and
(iii) a nonlinear inversion algorithm that compares the computed backscattered light at various
wavelengths and directions with that of the recorded image set [17].

The data acquisition geometry is designed in such a way that for each combination of il-
lumination and detection directions the same area of the skin is interrogated, allowing a one-
dimensional treatment when the independent-column approximation is invoked and the skin
tissue is assumed to have a layered structure: an uppermost layer, the epidermis, consisting of
an upper part and a lower part; the dermis, containing the blood circulation; and the subcutis,
a strongly scattering fat-containing layer. The inherent optical properties of each layer are the
absorption and scattering coefficients as well as the scattering phase function (describing the
angular variation of the scattered light), each varying with wavelength. The retrieved physiol-
ogy properties and morphometric parameters are (1) percentage of hemoglobin concentration,
(2) percentage of hemoglobin oxygenation, (3) upper epidermal thickness, (4) lower epider-
mal thickness, (5) percentage of melanosome concentration in upper epidermis, (6) percentage
of melanosome concentration in lower epidermis, and (7) percentage of keratin concentration.
Each of these seven physiology properties or morphometric parameters is retrieved pixel by
pixel in the compressed image to provide a map covering the zoomed lesion area. Note that
there is no verification of any of these retrieved values by application of different methods for
measuring them, but they have been found useful in an intermediate step leading to a final
diagnostic indication, as explained below.

From each map, an entropy value is calculated and cross entropy values are calculated for
different pairs of maps. The entropy concept used here is similar to that used in statistical physics
and information theory. Thus, we define the entropy E(pi ) associated with map number i (i =
1, 2, 3, . . . , 7) in terms of the spatial distribution pi (r) of the relevant physiological property or
morphometric parameter, where r is the position inside the area Ω of the map, as follows

E(pi ) = −
∫
Ω

λ ipi (r) ln[λ ipi (r)]dr ; λ i =

[∫
Ω

pi (r)dr
]−1

(1)

and we define the cross entropy for all pairs of maps with spatial distributions pi (r) (i =
1, 2, 3, . . . , 7) and pj (r) ( j = 1, 2, 3, . . . , 7) as the symmetic matrix E with elements Ei j , given
by

Ei j =
1
2

[
−E(pi ) − E(pj ) +

∫
Ω

λ ipi (r) ln[λ j pj (r)]dr +
∫
Ω

λ j pj (r) ln[λ ipi (r)]dr
]
. (2)
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These entropy and cross entropy values are used to define diagnostic parameters, as discussed
in Section 4.

3. Image recording and pre-processing

A lesion measurement comprises a set of 30 images recorded by an OTD scanner. For a given
wavelength and direction of illumination, the OTD scanner records three images simultaneously
at different detection angles. This procedure is repeated for 9 other wavelengths in the range
from the near ultraviolet to the near infrared at different illumination angles to produce a lesion
measurement that comprises a set of 30 images.

For any of the 30 images, each pixel corresponds to (i) a particular distance from one of the
10 LED sources of different intensity, (ii) a particular size of the of skin area for each of the
20 images that are recorded by one of the two side-viewing cameras; (iii) a particular location
of the illuminated skin area because of possible movement of the skin with respect to the OTD
scanner during the few seconds of sequential illumination by the 10 LEDs.

To address issues (i)-(iii) above, a series of pre-processing steps are performed, including
(1) relative calibration such that the intensity of each pixel is measured in units of the intensity
due to backscattering from a corresponding pixel having a Lambert surface; (2) geometrical
calibration such that an ellipse of illuminated skin area for a side-viewing camera is transformed
into a circle; (3) image registration such that each pixel in any of the 30 images corresponds to
the same area of the skin; (4) compression such that the raw image having about 7 × 106 pixels
with a spatial resolution of about 25 μm is replaced by a smoothed image with a total number
of pixels that is 100 times less than that of the raw image. Thus, the compressed image has 10
times less spatial resolution than the raw image, and a by-product of compression is filtering
of spatial high-frequency noise in the raw images due to possible spikes, specular points, and
hairs.

Automated zooming is employed to provide a lesion mask that circumferences the lesion and
is characteristic of its shape, and a surrounding mask that creates an area outside the lesion of
suitable size and the same outer shape as that of the lesion mask. The zooming allows one to get
rotation, translation, and scaling invariant characteristics of the lesion under investigation, both
for calibrated images and maps of physiology properties and morphometric parameters. Also,
zooming accelerates the processing since only pixels of the lesion and surrounding masks are
considered.

Figure 5 shows a dermoscopic image of a melanoma, while Fig. 6 shows the corresponding
RGB image and maps of physiology properties and morphometric parameters obtained from
OTD recordings and processing. Figures 7 and 8 show corresponding results for a compound
nevus. As noted above, from these maps, entropy and cross entropy values are calculated and
used to define diagnostic parameters, as discussed in Section 4.

Fig. 5. Dermoscopic image of a melanoma.
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Fig. 6. Corresponding RGB image and maps of physiology properties and morphometric
parameters for the melanoma in Fig. 5 obtained from OTD recordings and processing.

Fig. 7. Dermoscopic image of a compound nevus.

Fig. 8. Corresponding RGB image and maps of physiology properties and morphometric
parameters for the compound nevus in Fig. 7 obtained from OTD recordings and process-
ing.
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4. Diagnostic parameters

From the calibrated, registered, compressed, and zoomed OTD image of a lesion obtained from
nadir (vertically downward) illumination by green light (hereafter referred to as the ‘nadir green
image’) the following 10 morphometric parameters are derived: (1) Size; (2) Histogram width
(providing a measure of inhomogeneity of the reflected intensity); (3) Fractal dimension; (4)
Moment of inertia; (5) Asphericity; (6) Center distance (representing the physical distance be-
tween the geometrical center of the lesion and the center of mass of absorptance); (7) Border
length; (8) Average darkness; (9) Area divided by fractal dimension; and (10) Border length
divided by fractal dimension.

From the seven maps obtained from the retrieval discussed in Section 2, seven entropies and
21 cross entropies are derived, providing a total of 28 physiology properties and morphome-
tric parameters. By including also the logarithm of each of the 10 morphometric parameters
obtained from the nadir green image and the 28 entropy and cross entropy values derived from
the seven maps, one obtains a total of 76 diagnostic parameters.

Another 10 diagnostic parameters are derived from the maps of physiology properties: (1)
Maximum value of the melanin optical depth in the lesion area; (2) Architectural disorder: ratio
of maximum to minimum value of the melanin optical depth in the lesion area; (3) Blood filling:
maximum value of blood content in the surrounding area; (4) Angiogenesis: ratio of the number
of blood vessels in a surrounding area close to the lesion border to that in an area farther from
the lesion border, given by c1 A1�2/c2 A2�1, where (with j = 1, 2) cj is the blood concentration
in area Aj , and � j is the distance from the center of the lesion to the outer border of area Aj .
Here A1 is a surrounding area close to the lesion border, and A2 is a surrounding area farther
from the lesion border; (5) Ratio of the blood oxygenation in a surrounding area close to the
lesion border to that in an area farther from the lesion border, given by c′1 A1�2/c′2 A2�1, where
(with j = 1, 2) c′

j
is the blood oxygenation in area Aj , and where � j and Aj are the same as

in the definition above of Angiogenesis; (6) Melanin contrast: ratio of the total melanin optical
depth in the lesion area to that in the surrounding area; (7) Blood contrast: ratio of the blood
content in the lesion area to that in the surrounding area; (8) High spatial Fourier-components
of the map of total melanin optical depth in the lesion area (natural RoI, standard gridding); (9)
Entropy of contrast of the map of total melanin optical depth in the lesion area (natural RoI,
standard gridding); (10) The same entropy of contrast as above, but in the “original RoI”.

Here “RoI" stands for “Region of Interest", and “natural RoI" stands for a rectangular area
that is oriented in accordance with the shape of the lesion, and “standard gridding" means that
along the longest side of the natural RoI there are 100 grid points. The “original RoI" is the
rectangular zoom area of the compressed digital image.

As discussed above, there are N = 86 diagnostic parameterspj ( j = 1, 2, . . . , N): 2 × 10 mor-
phometric parameters derived from the nadir green image; 2 × 28 entropies and cross entropies
derived from maps of physiology properties and morphometric parameters; and 10 additional
physiology parameters derived from maps of physiology properties.

5. Diagnostic index and clustering

5.1. Diagnostic index

For each independent lesion measurement, we define a diagnostic index D as a weighted sum
of the diagnostic parameters pj

D = w · p. (3)

Here the weight vector w consists of N weights w j ( j = 1, 2, . . . , N), and p is a vector of N
diagnostic parameters pj .
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5.2. Clustering

Preliminary results based on analyses of independent measurements performed on a limited set
of suspicious lesions [15, 16] indicated that a linear binary classifier would suffice to discrim-
inate between independent measurements on malignant (class 1) lesions and benign (class 2)
lesions. But as the set of suspicious lesions was enlarged with the same type of lesions, a linear
binary classifier was found not to perform satisfactorily, motivating the development and use of
clustering, which is used to obtain discrimination between class 1 and class 2 lesions through
the identification of one set of class 1 clusters and another set of class 2 clusters, each clus-
ter comprising a certain number of independent measurements. Standard methods of clustering
were considered but found not to be applicable since it is not known a priori how the diagnostic
parameters pj in Eq. (3) can be used to discriminate between objects from opposite classes,
which are organized in accordance with dermoscopy evaluations and biopsy results.

For training of a diagnostic indication algorithm, we consider a set of lesions, some belonging
to class 1 and others to class 2, for each of which the diagnosis is known, and let each indepen-
dent lesion measurement be characterized by N diagnostic parameters pj ( j = 1, 2, . . . , N). The
first step of the clustering procedure is to discretize the diagnostic parameter pj as follows:

1. Calculate its mean value μ j by averaging over the set of independent measurements on
class 2 lesions and its standard deviation σ j by averaging over the set of independent
measurements on class 1 lesions, which has higher variability than the set of measure-
ments on class 2 lesions.

2. Discretize pj by setting it equal to p∗
j
, where

p∗j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−1 if pj < μ j − 0.7σ j

0 if μ j − 0.7σ j < pj < μ j + 0.7σ j

+1 if pj > μ j + 0.7σ j

(4)

where the cutoff value of 0.7σ j is chosen in order to ensure a fair representation of the set
of measurements on class 2 lesions. Note that the diagnostic parameters for class 2 (benign)
lesions have less variation than those for class 1 (malignant) lesions, implying that the trace of
the covariance matrix for class 1 lesions is larger than that for class 2 lesions. Therefore, the
mean value above is obtained from class 2 lesions, whereas the standard deviation is obtained
from class 1 lesions.

The definition of a clustering index for an independent lesion measurement is based on con-
structing coincidence vectors C+ and C− and probabilistic vectors t+ and t−:

C± = {T±
1 ,T

±
2 , . . . ,T

±
N } ; t± = {t±1 , t±2 , . . . , t±N } (5)

where the components T±
j

are coincidence parameters given by T+
j
= 1 if p∗

j
= +1 and T+

j
= 0

otherwise; T−
j
= 1 if p∗

j
= −1 and T−

j
= 0 otherwise; and where t±

j
= (
∑

T±
j

)1/2, the sum being
over all independent measurements on lesions of the class under consideration. The clustering
index C for an independent measurement on either a class 1 or a class 2 lesion is given by:

C = t+ · C+ + t− · C− . (6)

The independent measurements are ordered in accordance with the value of the clustering index,
and independent measurements having values of the clustering index in a specific interval, are
taken to belong to the same cluster. For details, see Appendix B.
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6. Generalized diagnostic parameters, cost function and optimization

6.1. Generalized diagnostic parameters

We reduce the number of diagnostic parameters by (i) introducing a covariance matrix for inde-
pendent measurements on lesions of class 1 and class 2, (ii) defining a discriminating operator
(see Eq. (25)) in terms of the two covariance matrices, (iii) constructing eigenvectors and eigen-
values on the basis of the discriminating operator and using only those eigenvalues that are
larger than a threshold value, chosen so as to ensure that sufficiently large variations of the diag-
nostic parameters associated with independent measurements on class 1 lesions are accounted
for, and (iv) defining for each independent measurement on a lesion of class 1 or class 2 a set of
generalized diagnostic parameters. As a result, Eq. (1) becomes

D = w̃ · p̃ (7)

where w̃ and p̃ are generalized weight and diagnostic parameter vectors, respectively, each
having a dimension Ñ that is typically only one third of the number N of original diagnostic
parameters. For details, see Appendix C.

6.2. Cost function and optimization

To determine optimal values of the weights in Eq. (7) we define a cost function consisting of a
master term and a constraint term, where the latter is used to constrain the length of the weight
vector to lie on the surface of a hypersphere in Ñ dimensions of radius equal to 1. For discussion
of the master term of the cost function, consider a set of independent lesion measurements that
is divided into two subsets of independent measurements, one on lesions belonging to class 1
(malignant) and another on lesions belonging to class 2 (benign).

For each generalized weight vector w̃, we compute, using Eq. (7), the corresponding gen-
eralized diagnostic indices D1(w̃) and D2(w̃) for each of the class 1 and class 2 independent
lesion measurements, respectively. Next, we compute the mean values

〈
D1

〉
and
〈
D2

〉
and the

corresponding standard deviations σ1 and σ2. The master term of the cost function is given in
terms of these parameters as

J0(w̃) =
1
σ1

∫ ∞

D∗ (w̃)
exp{−

[D −
〈
D1

〉
]2

2σ2
1

}dD +
1
σ2

∫ D∗ (w̃)

−∞
exp{−

[D −
〈
D2

〉
]2

2σ2
2

}dD (8)

where D∗ (w̃) is the point of intersection of the two Gaussians in Eq. (8), and the value of
J0(w̃) is the area of overlap of the two Gaussians. The minimization of J0(w̃) will provide the
smallest degree of overlap between the two Gaussians, and hence the best separation between in-
dependent measurements on class 1 and class 2 lesions. After minimization of the cost function,
Eq. (7) becomes

D = e · p̃ (9)

where e is an optimal generalized weight vector, hereafter referred as an expert, regarding the
separation between independent measurements belonging to the two classes of lesions.

7. Partial reliabilities for a pair of opposite clusters

For a pair of opposite clusters, consisting of cluster #i of class 1 lesions and cluster # j of class
2 lesions, we obtain a probabilistic characterization of an expert by (1) computing for each
independent lesion measurement included in the pair, the D value, given by D = e · p̃ [see Eq.
(9)], where e is the expert; (2) constructing two histograms, one for each cluster in the pair,
where each histogram represents the number of independent measurements having D values
within different bins in the interval between the minimum D value (Dmin) and the maximum
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D value (Dmax). Here Dmin is the absolute value of the largest negative D value for class 2
lesions (see blue curve in Fig. 9), and Dmax is the largest D value for class 1 lesions (see red
curve in Fig. 9). As a result, we obtain the two histograms (red for class 1 and blue for class
2) illustrated by the vertical lines in Fig. 9; (3) constructing the corresponding two smooth
histograms in Fig. 9 that represent probability density functions (pdfs); and (4) integrating the
blue (class 2) pdf in Fig. 9 from Dmin to a given D value and the red (class 1) pdf from a given
D value to Dmax to obtain the corresponding cumulative distributions in Fig. 10.

Fig. 9. Two histograms: class 1 (red) and class 2 (blue), and corresponding smooth repre-
sentations.

Fig. 10. Cumulative distributions corresponding to the smooth histograms in Figure 1.
Class 1 (red) and Class 2 (blue).

For an independent lesion measurement having a certain D value, we interpret the corre-
sponding ordinate values r on the two distribution curves in Fig. 10 as partial reliabilities of a
diagnostic indication. If we let r (1)

i , j (D) represent the red (class 1) curve in Fig. 10 and r (2)
i , j (D)

represent the blue (class 2) curve, then, by definition, r (1)
i , j (D) [r (2)

i , j (D)] represents the partial
reliability of a diagnostic indication in favor of the measurement belonging to a class 1 [class 2]
lesion.

8. Diagnostic indication by a team of experts

Consider a randomly drawn training ensemble comprised of M1 and M2 clusters of class 1 and
class 2, respectively, and define a modified diagnostic index D̃ by

D̃ = sign(δm1 ) |δm1 |1/Mmax ; δm1 =

M2∏
m2=1

(r (1)
m1 ,m2 + ε ) −

M2∏
m2=1

(r (2)
m1 ,m2 + ε ) (10)

where M = M1 × M2 and |δm1 |max is the largest of the |δm1 | values for m1 = 1, 2, . . . ,M1. The
value ε = 0.001 is used to avoid zeros appearing in the products in Eq. (10).
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The diagnostic indication by the team of M = M1 ×M2 experts associated with this randomly
drawn training ensemble is that if D̃ given by Eq. (10) is greater than or equal to zero, then the
measurement is regarded to represent a class 1 lesion. Typically three measurements are taken
of each lesion, and the diagnostic indication for a lesion by the team of experts is that if the
mean value of the modified diagnostic indices D̃ given by Eq. (10) for the measurements taken
is greater than or equal to zero, the lesion is regarded to be of class 1.

Figure 11 shows a flow chart of the steps followed to obtain a diagnostic indication by a team
of experts. (1) Draw at random from a given large set (GLS) of lesions, 77% of the independent
measurements (IMs) to obtain a training ensemble (TE); (2) Calculate for each IM in the TE
N = 86 diagnostic parameters (DPs); (3) Perform clustering to obtain M1 clusters of class 1 (C1)
and M2 clusters of class 2 (C2); (4) Calculate for each IM in the GLS geneneralized diagnostic
parameters (GDPs) given by Eq. (7) with an initial generalized weight vector (GWV) of equal
components; (5) Minimize a cost function (CF) to obtain M1 × M2 optimal GWVs or experts,
one for each opposite cluster (OC) pair; (6) Calculate partial reliabilitities PR1 and PR2 in favor
of a diagnostic indication of a class 1 (C1) and class 2 (C2), respectively, for each IM associated
with any combination of all OC pairs; (7) Calculate the modified diagnostic index (MDI) given
by Eq. (10); (8) If MDI ≥ 0, it is a lesion of class 1 (C1).

Fig. 11. Flow chart of the steps followed to obtain a diagnostic indication by a team of
experts.

The decision based on the modified diagnostic index in Eq. (10) constitutes a nonlinear binary
classifier. Its use is illustrated in Figs. 13 and 14. However, it is not used in the construction of
the final diagnostic indication tool discussed in Section 9.

9. Final diagnostic indication tool

Consider a large set of independent lesion measurements for which the diagnosis of each lesion
is known. We construct a final diagnostic indication tool by (i) drawing at random a training
ensemble consisting of a major part (e.g. 77%) of the independent measurements on lesions
belonging to each of class 1 and class 2, letting the remaining independent lesion measure-
ments constitute a validation ensemble, and performing clustering, as discussed in Section 5.2.
(All multiple measurements on any lesion are included into either the training or the validation
ensemble.); (ii) repeating this procedure to obtain K different randomly drawn training and val-
idation ensembles. (For randomly drawn training ensemble #k (k = 1, 2, . . . , K) there will be
M1(k) × M2(k) = M (k) different experts, each between a pair of opposite clusters.); and (iii)
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constructing statistically independent experts by (a) using the set of all different experts em(k )

(m(k) = 1, 2, . . . ,M (k), k = 1, 2, . . . K) resulting from K randomly drawn training ensembles,
and the corresponding derivatives dr (1)

m(k )/dD of the partial reliabilities to compute a matrix S
representing the covariance matrix of experts weighted with the corresponding subsets of lesion
measurements of class 1, given by

S =
K∑
k=1

M (k )∑
m=1

[∫ Dmax

0
(dr (1)

m(k )/dD)dD

]2
em(k )eTm(k ) ; (11)

(b) finding the eigenvectors sλ (λ = 1, 2, . . . ,M∗) of S; and (c) selecting, for each value of
λ, those three experts that have the largest values of the scalar product em(k ) · sλ to obtain
3 × M∗ statistically independent candidate experts, and hence 3M ∗

possible combinations of
experts for the final diagnostic indication tool; and (iv) finding the best combination of experts
for the final diagnostic indication tool is obtained by considering the matrices

∑M ∗
λ=1 ek ′ ,λeT

k ′ ,λ ,

where ek ′ ,λ represents one of the 3M ∗
possible combinations of experts, and choosing that

particular combination ek ′ ,λ of M∗ statistically independent experts among the 3M ∗
possible

combinations, which gives the M∗ largest values for the determinant of these matrices. A typical
number of “best” experts is M∗ = 12.

9.1. Application of the final diagnostic indication tool

Application of the final diagnostic indication tool described above to an unknown lesion in-
volves: (i) calculating for each of multiple measurements (typically three) on an unknown lesion
and for each of its M∗ “best” experts the optimal generalized diagnostic index given by Eq. (9),
finding the corresponding reliability values for class 1 and class 2, as discussed in section 7, and
determining the mean value of the sum of the four largest values of the difference between the
reliability for class 1 and that for class 2; and (ii) regarding the indication to be that of a class 1
lesion if the mean value determined above is greater than zero.

Experience has shown that use of this mean value provides a good combination of sensitivity
and specificity.

10. Discussion

Our classification scheme was developed and optimized on a clinical data set consisting of
1,495 lesion images collected in several clinical studies using different OTD prototypes from
2005 to date. Measurements on a total of 712 lesions (including 80 malignant lesions) were
used in K = 144 different training and validation exercises, in each of which 77% of all avail-
able measurements were randomly drawn for training, while the remaining 23% were used for
validation. For these 712 lesions, the histopathological diagnoses for both the dermoscopically
suspicious lesions and the dermoscopically benign lesions are given in Fig. 12. Typically three
measurements were performed on each lesion [19].

An essential ingredient of our classification scheme is the construction of clusters, M1 and M2

for class 1 (malignant) and class 2 (benign) lesions, respectively). Each of the randomly drawn
K = 144 training and validation ensembles provides M1 × M2 experts (linear binary classifiers,
each between a pair of opposite clusters), from which a nonlinear binary classifier or modified
diagnostic index was constructed that can be used to discriminate between malignant and benign
lesions. In total M1 × M2 × 144 different experts are provided, from which a final diagnostic
indication was constructed based on a small number (typically 12) of statistically independent
“best” experts. As an example, if there were M1 = 6 clusters of class 1 and M2 = 5 of class 2,
the total number of experts would be 4,320, among which, only about 12 “best” experts would
be used for construction of the final diagnostic indication tool.
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Fig. 12. Diagnoses of lesions used for training and validation.

The accuracy A of a binary classifier is a measure of how correctly it can identify elements
belonging to each of two classes, i.e.

A =
number of correct assessments

number of all assessments
. (12)

Alternatively, the accuracy can be expressed in terms of the sensitivity and specifcity and the
occurrence rates of the elements belonging to the two classes. If the occurrence rate is N1 for
class 1 and N2 for class 2, and a binary classifier has sensitivity Se and specificity Sp, a measure
of the accuracy is given by

A =
N1Se + N2Sp

N1 + N2
. (13)

Figure 13 shows the performance in terms of sensitivity and specificity of our nonlinear bi-
nary classifier based on the modified diagnostic index in Eq. (10) for discriminating between
malignant and benign lesions for 144 different, randomly drawn training and validation ensem-
bles. In each of the 144 cases included in Fig. 13, the data set consisted of 34 malignant lesions
and 103 benign lesions, all taken from a set of lesions considered by experienced dermatologists
to be suspicious and therefore biopsied.

From Fig. 13, the sensitivity and specificity are estimated to be 0.95 and 0.20, respectively,
so that Eq. (13) gives

A =
34 × 0.20 + 103 × 0.95

34 + 103
= 0.39. (14)

In the US, around 2.5-3 million skin lesions are biopsied annually and a fraction of these
– between 50,000 and 100,000 – are diagnosed as melanoma [4], implying that according to
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Fig. 13. Sensitivity (red) and specificity (blue) for 144 different randomly drawn training
and validation sets, each consisting of 137 lesions considered to be suspicious. According
to biopsy results, 34 lesions were malignant and 103 were benign.

Eq. (12), the accuracy is less than 0.04:

A <
100, 000

2, 500, 000
= 0.04. (15)

In comparison, our binary classifiers for a similar sampling of lesions would give an accuracy,
according to Eq. (13), of

A =
100, 000 × 0.95 + (2, 500, 000 − 100, 000) × 0.20

2, 500, 000
= 0.23 (16)

in spite of no access to medical case histories, which are available to dermatologists. Note
also that our final diagnostic indication tool (see Section 9), which is based on a small number
(typically 12) of “best” experts among the M1 ×M2 ×144 binary classifiers for randomly chosen
training and validation sets, gave a sensitivity higher than 0.98 for a specificity of 0.36 when
applied to a set of clinically suspicious lesions [19]. This result implies that our final diagnostic
indication tool can serve as a well-qualified expert, acting in a fast automatic mode to help
dermatologists to arrive at the correct decision for complicated cases, and thus help eliminate
unnecessary biopsies.

Figure 14 shows the performance of our binary classifiers for discriminating between malig-
nant and benign lesions in a set of unselected (“all-comer”) lesions, similar to that a Primary
Care Provider (PCP) is faced with. In this case, each training and validation set includes 34 ma-
lignant lesions (as confirmed by biopsy) and 233 beign lesions (as confirmed by dermoscopy).
Again the nonlinear binary classifier based on the modified diagnostic index in Eq. (10) was
employed. From Fig. 14, the sensitivity and specificity are estimated to be 0.95 and 0.85, re-
spectively, so that Eq. (13) gives

A =
34 × 0.95 + 233 × 0.85

34 + 233
= 0.86. (17)

Since the occurrence rate of malignant lesions in an all-comer study is very low, the accuracy
of our classifier is expected to be close to the value above of 0.86, which is much higher than
the accuracy of a PCP. Thus, our final diagnostic indication tool can be considered as capable
of providing a PCP with reliable, real-time decisions regarding melanoma referrals.
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Fig. 14. Sensitivity (red) and specificity (blue) for 144 different randomly drawn training
and validation sets, each consisting of 267 lesions of which 34 were malignant (according
to biopsy), and 233 were benign (according to dermoscopy).

11. Assessment of performance

The final diagnostic indication tool constructed as described in Section 9 was applied to two
different sets of data including only measurements on lesions confirmed by experienced derma-
tologists to be benign (and therefore not biopsied) and measurements on suspicious lesions that
were biopsied and diagnosed by pathologists to be either malignant or benign [19]:

• A small data set (157 lesions; 35 malignant and 39 benign, confirmed by biopsy; 81
benign, confirmed by dermoscopy) included all measurements performed on lesions that
were not included in the training of the small number (typically 12) of “best” experts used
for construction of the final diagnostic indication tool. The advantage of this data set is
that it only contains lesions that were not used in the training of the small number of “best”
experts used for construction of the final diagnostic indication tool. The disadvantage is
that it is small from a statistical point of view.

• A large data set (712 lesions; 80 malignant and 217 benign, confirmed by biopsy; 415
benign, confirmed by dermoscopy) included all available measurements used for con-
struction of the final diagnostic indication tool. The advantage of this data set is its size
from a statistical point of view. A disadvantage is that it contains data that were used in
the training, but the involvement in the training is not expected to have a significant im-
pact because experience has shown that the lesion being evaluated is usually not involved
in the training of the four experts taking part in the final diagnostic indication decision
(see Section 9).

For discrimination of malignant lesions (as confirmed by pathology) from benign lesions (as
confirmed by dermoscopy), the sensitivity/specificity was 97%/97% for application of the fi-
nal diagnostic indication tool to the small data set, and 99%/93% for application of the final
diagnostic indication tool to the large data set. We see that these results, obtained using the
final diagnostic indication tool based on a small number of statistically independent “best” ex-
perts, are greatly improved compared to those presented in Fig. 13, obtained using the modified
diagnostic index in Eq. (10).

12. Conclusions

We have discussed a novel spectral radiometer designed to record multispectral images of skin
tissue in such a way as to allow a one-dimensional configuration for a layered tissue and provide
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maps of physiology properties and morphology parameters that can be used for tissue classifi-
cation. Although these maps have not been verified by separate methods for measuring them,
they have proved useful in an intermediate step towards a final diagnostic indication. Further,
we have discussed a classification scheme based on clustering, which has been trained and vali-
dated on 712 images of pigmented skin lesions of which 415 were of benign lesions and 297 of
lesions suspicious of melanoma according to clinical assessment.

The discussion in Section 10 indicates that our final dignostic indication tool can serve in
a fast, automatic mode to help dermatologists discriminate between benign pigmented lesions
and melanoma in a population of suspicious lesions, and provide Primary Care Providers with
reliable, real-time decisions regarding melanoma referrals, thus reducing the number of unnec-
cessary biopsies significantly. The performance assessment in Section 11 shows that applica-
tion of our final diagnostic indication tool to discriminate malignant lesions (as confirmed by
pathology) from benign lesions (as confirmed by dermoscopy), gives sensitivity/specificity in
the range from 97%/97% (for a small data set) to 99%/93% (for a large data set).

In comparison, for discrimination between melanoma and benign pigmented lesions in a
population of suspicious lesions, MelaFind conducted a clinical study involving 1,831 pig-
mented skin lesions, obtaining 98% sensitivity and 9% specificity [8], and Nevisense (SciBase
AB, Stockholm, Sweden) employed a non-optical technique called electrical impedance spec-
troscopy in a clinical study involving 1,943 suspicious lesions, obtaining 96.6% sensitivity and
34.4% specificity for melanoma detection [20].

In conclusion, the optical device and associated automatic diagnostic indication tool dis-
cussed in this paper may be used to obtain a significant reduction of unnecessary, costly biopsies
in melanoma detection, both by dermatologists and Primary Care Providers, without compro-
mising patient safety.

Appendix A
In order to increase the robustness of the maps of physiology properties and morphology pa-
rameters obtained by the OTD inversion procedure, we employ statistical information extracted
from multiple measurements (typically three) of each lesion. For each of the 10 different wave-
lengths λ i (i = 1, 2, . . . , 10), we compute the average value Iλi ,m for measurement #m of the
reflected light for each pixel (after compression) inside the area surrounding the lesion. Next, we
average over several measurements of the same lesion to obtain Iλi

, and we define the column
vectors

Im = [Iλ1 ,m , Iλ2 ,m , . . . , . . . Iλ10 ,m]T ; I = [Iλ1 , Iλ2 , . . . , . . . Iλ10 ]
T (18)

where T denotes the transpose. Further, we define the vector ΔIm = Im − I and estimate the
covariance matrix Ĉ� for lesion #�:

Ĉ� =
1

M − 1

M∑
m=1

ΔIm[ΔIm]T (19)

which is a 30 × 30 matrix. Finally, we average over all available lesions (� = 1, 2, . . . , L) to
obtain

Ĉ =
1
L

L∑
�=1

Ĉ� (20)

which represents the uncertainties in our measurements.
An estimate of the misfit between the measured and simulated reflected light for a given pixel

(after compression) is given by (see Eq. 9(A.7) in [17]):

J0 = [iλi ,n − ĩλi ,n]T [Ĉ]−1[iλi ,n − ĩλi ,n] (21)
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where iλi ,n is the measured reflected light for pixel #n and wavelength λi , and ĩλi ,n is the simu-
lated reflected light for pixel #n and wavelength λi . Use of the result in Eq. (21) in the inversion
procedure reduces the difference between the resulting maps of physiology properties and mor-
phology parameters significantly, and results in reduced variance of the diagnostic parameters
among multiple measurements on the same lesion.

Appendix B
To construct clusters of independent measurements on class 1 lesions relative to the entire set
of independent measurements on class 2 lesions, we start with the class 1 measurement having
the highest clustering index, as given by Eq. (6). Then we add cm independent measurements
to this one to obtain a total of cm + 1 independent measurements in this first cluster, where cm
is obtained from the requirement that the function F (c), given by

F (c) = S(c) × tanh(10
c + 1

C
) (22)

shall have its maximum value when c = cm . Here C is the total number of independent measure-
ments belonging to the available set of independent measurements on class 1 lesions, and S(c)
is the specificity, i.e. the ratio between the number of correctly classified independent measure-
ments on class 2 lesions and the total number of independent measurements on class 2 lesions.

Similarly to the procedure for construction of class 1 clusters, we start the construction of
class 2 clusters by considering the independent measurement on class 2 lesions having the
highest clustering index, as defined in Eq. (6), and add cm independent measurements to this
independent measurement to obtain a total of cm + 1 measurements in this first class 2 cluster,
where cm is obtained from the requirement that the function F (c), given by Eq. (22), shall have
its maximum value when c = cm . Here C is the total number of measurements belonging to the
available set of independent measurements on class 2 lesions, and S(c) is the sum of specificities
for the cluster under construction vs. each of the class 1 clusters. The specificity Si (c) for the
cluster under construction vs. cluster #i of class 1 lesions is the ratio between the number of
correctly classified measurements of class 2 lesions and the total number of measurements on
class 2 lesions contained in the cluster under construction. Thus, S(c) is given by

S(c) =
L1∑
i=1

Si (c). (23)

Appendix C
In order to reduce the dimension of the optimization problem discussed in Section 5, we define
a set of generalized diagnostic parameters by introducing a covariance matrix for each of the
two classes (q = 1 and q = 2) of lesions, given by

V̂(q) =
1

Mq − 1

Mq∑
i=1

(p(q)
i
− 〈p(q)〉)(p(q)

i
− 〈p(q)〉)T (24)

where the superscript T denotes the transpose, p(q)
i
= {p(q)

i ,1 , p
(q)
i ,2 , . . . , p

(q)
i ,N } is the vector of

diagnostic parameters comprised of N components for independent measurement #i on lesions
belonging to class q, 〈p(q)〉 is the average value of the diagnostic vectors for all independent
measurements on lesions belonging to class q, and Mq is the number of independent measure-
ments on lesions belonging to class q. Note that by definition, Tr{V̂(1) } > Tr{V̂(2) }. Next, we
introduce a discriminating operator

D̂ = [V̂(2)]−1/2[V̂(1)][V̂(2)]−1/2 (25)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                         Vol. 8, No. 6 | 1 Jun 2017 | BIOMEDICAL OPTICS EXPRESS 2963 



which is a generalization of the signal-to-noise ratio for multivariate random signals. To dis-
criminate between independent measurements on lesions belonging to class 1 and class 2 and
reduce the dimension of the optimization problem we extract eigenvectors dα according to

D̂dα = αdα (26)

and introduce a subset of eigenvectors dαk
for each of which the eigenvalue αk > αmin, where

αmin is chosen to be equal to or larger than 0.7 in order to ensure that one accounts for suffi-
ciently large variations of the diagnostic parameters associated with independent measurements
on class 1 lesions. For an independent measurement on a lesion of class 1 or class 2, we define
a vector p̃ of generalized diagnostic parameters:

p̃ = {dα1 · Δp, dα2 · Δp, . . . , dαmin · Δp}. (27)

Here Δp = p − 〈p(2)〉, where p is the vector of original diagnostic parameters in Eq. (3) and
〈p(2)〉 is the average of the vectors of diagnostic parameters for all independent measurements
on class 2 lesions.

The condition αk > αmin leads to a substantial reduction in the number of diagnostic param-
eters. Thus, the number Ñ of generalized diagnostic parameters is typically only one third of
the number N = 86 of original diagnostic parameters. The generalized diagnostic index for an
independent measurement on a lesion of class 1 or class 2 is given by:

D = w̃ · p̃ (28)

where w̃ has the same dimension as p̃.
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